Design of LDPC Codes for Cooperative Diversity Systems

Chuxiang Li*, Mohammad Ali Khojastepour#, Guosen Yue#, Xiaodong Wang*, Mohammad Madihian#

* Columbia University, New York, NY 10027
NEC Laboratories America, Princeton, NJ 08540

October 2005
Outline

• Background
• LDPC code design for cooperative relay systems
• Simulation results
• Conclusions
Background: Cooperative Relay System

- Relay node operations:
 - receive the signal from S;
 - amplify or decode the signal;
 - transmit the signal to D.
- Destination node operations:
 - receive and decode the signals from both S and R.

(a) diagram of a single-relay system
(b) one-dim channel model
Background: Two Relay Protocols

Simple protocol

\[y_D(1) = h_{SD} w_1 + n_D \]
\[y_D(2) = h_{SD} w_2 + h_{RD} w_1 + n_D \]

"Decode-and-forward" (DF) protocol

\[y_D(1) = h_{SD} w_1 + n_D \]
\[y_D(2) = h_{SD} w_1 + h_{SD} w_2 + h_{RD} w_1 + n_D \]
Background: Factor Graph (FG)

- Factor graph representation:
 entire FG (B-block) and partial FGs (PFG, 2-block)
- Optimum code design: over the entire FG
 high computational complexity and long delay in decoding
Background: FG Decoupling

- Suboptimum code design:
 over the PFG (instead of the entire FG)

- Successive decoding:
 - corresponding to the structure of successive PFGs
 - forward-decoding (FW) and backward-decoding (BW)
Code Design: Relay Operations

- Simple protocol: AWGN \(y_R(t) = \sqrt{P_S}h_{SR}w_t + n_R \)
- DF protocol: virtual MISO model

\[
y_R(t) = \sqrt{P_{S,1}}h_{SR}w_t + \sqrt{P_{S,2}}h_{SR}w_{t+1} + n_R
\]
i.e., \(y_R(t) = h_{SR}[\sqrt{P_{S,1}}, \sqrt{P_{S,2}}][w_t, w_{t+1}]^T + n_R \)

- EXIT chart analysis for LDPC-coded relay (virtual MISO)

\[
I_R(t) \text{ and } \sigma_R(t) = J^{-1}(I_R(t))
\]

- Two independent LDPC decoders: \(w_t \) and \(w_{t+1} \) (or \(w_{t-1} \))
- The relay output is the decoder output for \(\hat{w}_t \)
- The decoding of \(w_{t+1} \) only helps to improve the prior in the decoding of \(\hat{w}_t \)
- The relay output \(I_R(t) \) will be exploited as the prior during the time slot \((t+1) \) when decoding \(\hat{w}_{t+1} \)
Code Design: Relay Performance Analysis

• Iterative receiver for the LDPC-coded relay node
Code Design: Destination Operations (Virtual MIMO Model)

\[y(t) = Hx(t) + n(t), \]
\[y(t) = [y_D(t), y_D(t + 1)]^T, \quad x(t) = [w(t), \hat{w}(t), w(t + 1), \hat{w}(t + 1)]^T \]

- **Simple protocol: MIMO**
 - FW-dec.:
 \[H_s^f = \begin{bmatrix} h_{SD}\sqrt{P_S} & 0 & 0 & 0 \\ 0 & h_{RD}\sqrt{P_R} & 0 & h_{SD}\sqrt{P_S} \end{bmatrix} \]
 - BW-dec.:
 \[H_s^b = \begin{bmatrix} 0 & h_{RD}\sqrt{P_R} & 0 & 0 \\ h_{SD}\sqrt{P_S} & 0 & 0 & h_{RD}\sqrt{P_R} \end{bmatrix} \]

- **DF protocol: MIMO**
 - FW-dec.:
 \[H_{DF}^f = \begin{bmatrix} h_{SD}\sqrt{P_{S,1}} & 0 & 0 & 0 \\ h_{SD}\sqrt{P_{S,2}} & h_{RD}\sqrt{P_R} & h_{SD}\sqrt{P_{S,1}} & 0 \end{bmatrix} \]
 - BW-dec.:
 \[H_{DF}^b = \begin{bmatrix} h_{SD}\sqrt{P_{S,2}} & h_{RD}\sqrt{P_R} & 0 & 0 \\ h_{SD}\sqrt{P_{S,1}} & 0 & h_{SD}\sqrt{P_{S,2}} & h_{RD}\sqrt{P_R} \end{bmatrix} \]
Code Design: Destination Performance Analysis

- **EXIT analysis for the LDPC-coded destination**

\[I_D(t) = \sum_i \lambda_i J(\sqrt{[J^{-1}(I_{E,\text{Det}(i))}]^2 + i[J^{-1}(I_{E,\sqrt{ND}})]^2}) \]

- Two independent LDPC decoders: \(w_t \) and \(w_{t+1} \) (or \(w_{t-1} \))
- The destination output is the decoder output for \(\hat{w}_t \)
- The decoding of \(w_{t+1} \) only helps to improve the prior in the decoding of \(\hat{w}_t \)
- The relay output \(I_D(t) \) will be exploited as the prior in the PFG-(t+1) when decoding \(\hat{w}_{t+1} \)

Similar receiver structure as that for the relay
Code Design: Conventional Code Performance Analysis

- Relay decoding to get \hat{w}_t for each w_t

The imperfect relaying effects are **numerically** incorporated into the destination performance via the virtual MIMO model.

$$y = Hx + n \text{ where } x = [w_t, \hat{w}_t, w_{t+1}, \hat{w}_{t+1}]$$

- The destination detector output $I_{E,Det}(i)$ within each iteration

$$\text{ML detection : } L_{E,Det} = \log \frac{\sum_{w_{t+1}} \sum_{\hat{w}_t} p(y|w_{t}=1)}{\sum_{\hat{w}_{t+1}} \sum_{\hat{w}_t} p(y|w_{t}=-1)}$$

Numerically obtained function: $I_{E,Det}(i) = f_{Det}(I_{A,Det}(i), \frac{E_b}{N_0})$

All **numerical** procedures, high computational complexity and thus slow evolution
Code Design: Semi-analytical Performance Analysis Approaches

• BSC approximation for the relay:
 \[\hat{w}_t = f_R(w_t) = w_t \text{ or } -w_t \]
 with the crossover probability \(P_0 = P(\hat{w}_l \neq w_l | w_l) = Q\left(\frac{J^{-1}(I_R)}{2}\right) \)
 – Approximate the relay output using the BSC output \(\hat{w}_t \)
 (instead of numerically decoding to get \(\hat{w}_t \))

• Efficient destination detector with Gaussian approx.:
 – Computationally efficient detection (instead of ML)
 Semi-analytical expressions are available for \(L_{E,Det} \).
 – \(I_{E,Det}(i) \) also has semi-analytical expressions including the parameter \(P_0 \) (instead of numerically calculation)
 – The imperfect relaying effects are analytically incorporated into the destination performance via \(P_0 \)
Results: Destination Performances (1)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>0.25</td>
<td>FW</td>
<td>-1.25dB</td>
<td>-0.30dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BW</td>
<td>-1.55dB</td>
<td>-0.75dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>FW</td>
<td>-2.50dB</td>
<td>-1.50dB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BW</td>
<td>-2.90dB</td>
<td>-2.10dB</td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>0.25</td>
<td>FW</td>
<td>-3.50dB</td>
<td>-3.45dB</td>
<td>-2.61dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BW</td>
<td>-3.50dB</td>
<td>-3.47dB</td>
<td>-2.64dB</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>FW</td>
<td>-3.70dB</td>
<td>-3.25dB</td>
<td>-2.34dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BW</td>
<td>-3.70dB</td>
<td>-3.26dB</td>
<td>-2.37dB</td>
</tr>
</tbody>
</table>
Results: Destination Performances (2)

- **Significant gain over regular codes:**
 - Optimized codes versus regular codes (0.8dB gain)

- **Capacity-approaching performance:**
 - Optimized codes versus capacity (within 0.1dB gap)
 - (DF protocol, d=0.25)

- **Successive decoding schemes:**
 - BW-dec. outperforms FW-dec. (0.3~0.4dB gain)
 - BW versus FW (simple protocol)
 - BW-dec. has approximated perf. as FW-dec.
 - BW versus FW (DF protocol)

Imperfect relaying effects!
Results: Relay Performances (1)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Relay simple</td>
<td>0.25</td>
<td>-1.25dB (FW)</td>
<td>-1.55dB (BW)</td>
<td>-4.98dB</td>
<td>-4.17dB</td>
</tr>
<tr>
<td>Relay simple</td>
<td>0.50</td>
<td>-2.50dB (FW)</td>
<td>-2.90dB (BW)</td>
<td>-3.26dB</td>
<td>-2.40dB</td>
</tr>
<tr>
<td>DF</td>
<td>0.25</td>
<td>-3.45dB (FW)</td>
<td>-3.47dB (BW)</td>
<td>-3.45dB</td>
<td>-2.62dB</td>
</tr>
<tr>
<td>DF</td>
<td>0.50</td>
<td>-3.25dB (FW)</td>
<td>-3.26dB (BW)</td>
<td>-3.23dB</td>
<td>-2.35dB</td>
</tr>
</tbody>
</table>
Results: Relay Performances (2)

• Significant gain over regular codes
 – Optimized codes versus regular codes (0.8dB gain)
 – Note: The optimized codes are designed for the destination (instead of the relay).

• Perfect relaying
 – Relay perf. versus Dest. perf. (simple protocol)
 – Destination perf.: \textit{BW outperforms FW} (over 0.3dB gain)

• Imperfect relaying
 – Relay perf. versus Dest. perf. (DF protocol)
 – Destination perf.: \textit{BW has approximated perf. as FW}
 – The destination has approximated perf. as the relay.

\textit{Relay performances are crucial to the relay system!}
Conclusions

• The optimization framework for the LDPC-coded cooperative relay systems
• Efficient approaches for code performance analysis
• The optimized codes can achieve significant gains over the regular codes;
• Under the DF protocol, the optimized codes can approach within 0.1dB gap to the capacity;
• Relay performances are crucial to the system performances.