Cooperative Communication—An Overview

Behnaam Aazhang
Credits

• Ashutosh Sabharwal
• M. A. (Amir) Khojasetpour, NEC Labs
• Nasir Ahmed, Exelon
• Arnab Chakrabarti
• Alex deBaynast
Outline

• Motivation
• A new paradigm
 – Physical layer--Network
• The relay example:
 – Theoretical
 – Practical
• Potentials
Channel?

- Network is the channel
Routing?

- Physical layer is not *just* a bit pipe
- Packet *integrity* is not sacred
Physical Layer-Network Layer

- Cross layer optimization
 - Joint source and channel coding
- Feedback
- Explore all available dimensions
 - Signal, space, distributed hardware
Theoretical Implications

- Spatial dimensions
 - Multiple antennas
 - User cooperation
- New degrees of freedom
 - Diversity
 - Multiplexing

\[
\text{BER or } FER \propto \frac{1}{SNR^d}
\]

- Multiplexing

\[
R \propto mE[\log(1+|h|^2SNR)]
\]

Simple direct fading SISO link
Practical Implications

• Access--Scheduling
• Distributed coding
• Feedback
• Relaying protocols
Historical Account

- Introduced in 1971 [Van der Meulen]
- Degraded relay channel in 1979 [Cover & El Gamal]
- Isolated work in the 80’s and 90’s [Willems, Vodafone]
- Recent resurgence
Two Relays

- A broader configuration [Shein & Gallegar]
Butterfly Network

- Wired and wireless [Yeung & Ahlswede]
Multi Hop Network

• Large body of recent work
 [Gupta & Kumar, Gastpar & Vetterli, Reznik & Verdu & Kulkarni]
User Cooperation

• A multiuser perspective [Sendonaris & Erkip & Aazhang]
A Broader Picture: Network Coding
Relay Channel

• A building block
Gaussian Fading Model

• The channel qualities

\[\gamma_0 = \frac{|h_{12}|^2}{N_1}, \quad \gamma_1 = \frac{|h_{10}|^2}{N_0}, \quad \gamma_2 = \frac{|h_{20}|^2}{N_0} \]

Source

\[Y_0 = h_{10}X_1 + h_{20}X_2 + Z_0 \]

Relay

\[Y_1 = h_{12}X_1 + Z_1 \]

Destination
Relay Operation

• Full Duplex
 – Relay can receive and transmit same time and same frequency band
 • RF isolation
 • Transmit signal may be 100-150 dB above received signal
Relay Operation

- Half duplex
 - Relay will not receive and transmit same time and same frequency band
 - Code division duplex
 - Frequency division duplex
 - Time division duplex

Broadcast

1st time slot

2nd time slot

Multiple access
Relay Function

• Fixed relaying
 – Decode and forward
 – Estimate and forward
 – Amplify and forward

• Adaptive relaying
 – Selection
 – Incremental
Theoretical Issues: Achievable Rates

- Mutual information
- Bounds on capacity
 - Max flow min cut
 - Multi-state max flow min cut
 - Half duplex
 - Fading

Achievable rate Capacity

Lower bound on Capacity Upper bound on Capacity
Outage

- Probability of outage

\[\Pi_{out} = P[I(\gamma, P_s, P_r) < R] \]

- The frame error rate

\[\Pi_{out} \leq FER \]
Diversity Gain in Outage

![Graph showing diversity gain in outage with curves for direct transmission, half-duplex multi-hop, amplify forward, and half-duplex decode forward.]
Practical Issues: Coding

- Convolutional codes
- Turbo codes
- LDPC
 - Half duplex
 - Full duplex
LDPC Codes for Relay Channels

- BC mode $X_{1,BC}$

 $\rho = E[X_{1,BC}X_{1,MAC}^*] \in [-1,1]$

- MAC mode $X_{1,MAC}$

- Modified density evolution

Broadcast

1st time slot

2nd time slot

Multiple access
Asymptotic Performance
BER performance of LDPC constituent codes in relay coding scheme

- BC mode: $S \rightarrow D$
- BC mode: $S \rightarrow R$
- MAC mode: $S, R \rightarrow D$

Bit Error Rate vs. E_b/N_0 (dB)
Practical Issues: Feedback

• Feedback used to adjust
 – Codebook power
 – Codebook size

• Power control minimizes outage

• Rate and power control maximize throughput
Amplify and Forward ($R=1, \alpha=3, d=0.5$)

- Optimal power control
- Without feedback
- 1 bit feedback const Pr
- 1 bit feedback var Pr
Open Problems-Theory and Algorithm

• Multiple antennas
• Code construction
• Feedback for power and rate control
• Implementation
Research Platform
Board at Work
TAP: A Mesh Network
The Premise and the Promise

- The last few miles
 - Role of physical layer
 - Paradigm shift
- Mesh networks
- Diversity gain
- Rate increase
 - Scale?